On the Application of Numerical Methods to Hallén’s Equation
نویسندگان
چکیده
The so-called Hallén integral equation for the current on a finite linear antenna center-driven by a delta-function generator takes two forms depending on the choice of kernel. The two kernels are usually referred to as the exact and the approximate or reduced kernel. With the approximate kernel, the integral equation has no solution. Nevertheless, the same numerical method is often applied to both forms of the integral equation. In this paper, the behavior of the numerical solutions thus obtained is investigated, and the similarities and differences between the two numerical solutions are discussed. The numerical method is Galerkin’s method with pulse functions. We first apply this method to the two corresponding forms of the integral equation for the current on a linear antenna of infinite length. In this case, the method yields an infinite Toeplitz system of algebraic equations in which the width of the pulse basis functions enters as a parameter. The infinite system is solved exactly for nonzero pulse width; the exact solution is then developed asymptotically for the case where the pulse width is small. When the asymptotic expressions for the case of the infinite antenna are used as a guide for the behavior of the solutions of the finite antenna, the latter problem is greatly facilitated. For the approximate kernel, the main results of this paper carry over to a certain numerical method applied to the corresponding equation of the Pocklington type.
منابع مشابه
A family of positive nonstandard numerical methods with application to Black-Scholes equation
Nonstandard finite difference schemes for the Black-Scholes partial differential equation preserving the positivity property are proposed. Computationally simple schemes are derived by using a nonlocal approximation in the reaction term of the Black-Scholes equation. Unlike the standard methods, the solutions of new proposed schemes are positive and free of the spurious oscillations.
متن کاملApplication of high-order spectral method for the time fractional mobile/immobile equation
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملA wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملApplication of Legendre operational matrix to solution of two dimensional nonlinear Volterra integro-differential equation
In this article, we apply the operational matrix to find the numerical solution of two- dimensional nonlinear Volterra integro-differential equation (2DNVIDE). Form this prospect, two-dimensional shifted Legendre functions (2DSLFs) has been presented for integration, product as well as differentiation. This method converts 2DNVIDE to an algebraic system of equations, so the numerical solution o...
متن کامل